

The ecology of adaptive radiations

Dolph Schlute

Darwin's finches in the Galapagos

Closely related species often differ in both phenotypes and ecological niches

Radiation of Triplefin Fishes

New Zealand has the greatest diversity of triplefin fishes in the world

Sympatric distribution

Conforms to the criteria of an adaptive radiation

- 1) What are the ecological traits under selection?
- 2) Which traits are potentially available for reproductive isolation?

Triplefins have diversified ecologically...

rockpools

deep shelf <500m

estuaries

rocky reefs

pelagic

harbours & bays

Wellenreuther, Syms & Clements (2008) *Ecography* Wellenreuther, Barrett & Clements (2007) *Marine Ecology Progress Series*

Habitat diversification leads to reproductive isolation

Wellenreuther M & Clements K D (2007) Marine Biology

"Neutral" community ecology: rapid speciation by sexual selection?

McPeek et al. (2006) Am. Nat.
McPeek and Brown (2000) Ecology

McPeek, Shen and Farid (2009) Evolution

Talk outline: Three aspects

- 1. Ecological differences
- 2. Reproductive isolation
- 3. Colour polymorphism

1. Ecological differences in Calopteryx

Females

Calopteryx splendens

Males

Calopteryx virgo

Larval phase≈2 years, adult stage≈ 2 weeks Co-exist along rivers

Field sampling: Sweden and Finland

Niche modeling

Calopteryx virgo

Niche Null Models-Entire Range

Niche Null Models-Sympatry

Weak (ns) thermal niche divergence in sympatry

Effects of species: Wilks Lambda = 0.978; F(3,122)=0.895, P=0.45

2. Reproductive isolation

Map of the distribution of the *C. splendens* Northern range limit of C. virgo

Wellenreuther, Tynkkynen and Svensson (2010) Evolution

Courtship Response with Latitude

A More Qualitative Look

Male *C. virgo* respones to *C. splendens* females

Isolation through learning?

3. Colour polymorphism

- Consequence of intense mating harassment by males
- Multiple matings common
- Last male sperm precedence
- Penises have brushes, hooks, grabbers and spreaders

A microscope view of the slaty skimmer penis show a bristly median lobe and oarlike lateral lobes on each side.

Colour polymorphic Ischnura elegans

Infuscans-obsoleta

Sánchez-Guillén, Hansson, Wellenreuther, Svensson & Cordero-Rivera (2011) Heredity

Ischnura elegans

- Very widespread
- Wide ecological niche[®]
- Good disperser
- Early coloniser

North and central

East

West and South

Wellenreuther, Sánchez-Guillén, Cordero-Rivera, Svensson & Hansson (2011) PLoS ONE

Low ecological divergence & hybrids

Male abdominal appendages

Lateral view of the pronotum

IE male X IG female low

IG male X IE female high

Sánchez-Guillén, Wellenreuther & Cordero-Rivera (2011) Evolution Sánchez-Guillén, Wellenreuther, Cordero, & Hansson (2011) BMC Evolutionary Biology

Phenotype-Genotype mapping

1. Genotype males and larvae

2. Macroevolution of a colour polymorphism

Genomic approaches

- 1. Draft genome (LGC)
- -annotation, gene function, assembly
- 2. RAD genotyping of pedigree (Genepool)
- -detailed linkage map, co segregation between markers and colour
- 3. Re-sequencing of morphs (BGI)
- -allele frequencies, validation
- 4. Transcriptome data (Leiden)
- -improve draft genome, function

Summary and conclusions

Several features of odonate biology make them suitable for studies of non-ecological speciation

These features include 1/strong sexual selection, 2/strong sexual isolation and 3/weak ecological niche divergence

Learning is a powerful mechanism for the development of sexual isolation

Colour polymorphisms in females reduce male mating harassment

Mapping colour genes will give insights into the processes that maintain natural variation

Erik Svensson

Keith Larson

Katja Kuitunen

Bengt Hansson

Adolfo Cordero-Rivera

Anna Runemark

Machteld Verzijden

Vetenskapsrådet

MARIE CURIE

